Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
1.
Front Microbiol ; 15: 1346762, 2024.
Article in English | MEDLINE | ID: mdl-38476940

ABSTRACT

Introduction: During the COVID-19 Delta variant surge, the CLAIRE cross-sectional study sampled saliva from 120 hospitalized patients, 116 of whom had a positive COVID-19 PCR test. Patients received antibiotics upon admission due to possible secondary bacterial infections, with patients at risk of sepsis receiving broad-spectrum antibiotics (BSA). Methods: The saliva samples were analyzed with shotgun DNA metagenomics and respiratory RNA virome sequencing. Medical records for the period of hospitalization were obtained for all patients. Once hospitalization outcomes were known, patients were classified based on their COVID-19 disease severity and the antibiotics they received. Results: Our study reveals that BSA regimens differentially impacted the human salivary microbiome and disease progression. 12 patients died and all of them received BSA. Significant associations were found between the composition of the COVID-19 saliva microbiome and BSA use, between SARS-CoV-2 genome coverage and severity of disease. We also found significant associations between the non-bacterial microbiome and severity of disease, with Candida albicans detected most frequently in critical patients. For patients who did not receive BSA before saliva sampling, our study suggests Staphylococcus aureus as a potential risk factor for sepsis. Discussion: Our results indicate that the course of the infection may be explained by both monitoring antibiotic treatment and profiling a patient's salivary microbiome, establishing a compelling link between microbiome and the specific antibiotic type and timing of treatment. This approach can aid with emergency room triage and inpatient management but also requires a better understanding of and access to narrow-spectrum agents that target pathogenic bacteria.

2.
Microbiol Resour Announc ; 13(4): e0121123, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38501780

ABSTRACT

The white spot syndrome virus (WSSV) is a causative agent of white spot disease (WSD) in crustaceans, especially in cultivated black tiger shrimp (Penaeus monodon), leading to significant economic losses in the aquaculture sector. The present study describes four whole genome sequences of WSSV obtained from coastal regions of Bangladesh.

3.
Appl Physiol Nutr Metab ; 49(1): 125-134, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37902107

ABSTRACT

Sucralose and acesulfame-potassium consumption alters gut microbiota in rodents, with unclear effects in humans. We examined effects of three-times daily sucralose- and acesulfame-potassium-containing diet soda consumption for 1 (n = 17) or 8 (n = 8) weeks on gut microbiota composition in young adults. After 8 weeks of diet soda consumption, the relative abundance of Proteobacteria, specifically Enterobacteriaceae, increased; and, increased abundance of two Proteobacteria taxa was also observed after 1 week of diet soda consumption compared with sparkling water. In addition, three taxa in the Bacteroides genus increased following 1 week of diet soda consumption compared with sparkling water. The clinical relevance of these findings and effects of sucralose and acesulfame-potassium consumption on human gut microbiota warrant further investigation in larger studies. Clinical trial registration: NCT02877186 and NCT03125356.


Subject(s)
Carbonated Water , Young Adult , Humans , Pilot Projects , Sweetening Agents/pharmacology , Diet , Potassium
4.
Syst Biol ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37941464

ABSTRACT

For much of terrestrial biodiversity, the evolutionary pathways of adaptation from marine ancestors are poorly understood, and have usually been viewed as a binary trait. True crabs, the decapod crustacean infraorder Brachyura, comprise over 7,600 species representing a striking diversity of morphology and ecology, including repeated adaptation to non-marine habitats. Here, we reconstruct the evolutionary history of Brachyura using new and published sequences of 10 genes for 344 tips spanning 88 of 109 brachyuran families. Using 36 newly vetted fossil calibrations, we infer that brachyurans most likely diverged in the Triassic, with family-level splits in the late Cretaceous and early Paleogene. By contrast, the root age is underestimated with automated sampling of 328 fossil occurrences explicitly incorporated into the tree prior, suggesting such models are a poor fit under heterogeneous fossil preservation. We apply recently defined trait-by-environment associations to classify a gradient of transitions from marine to terrestrial lifestyles. We estimate that crabs left the marine environment at least seven and up to 17 times convergently, and returned to the sea from non-marine environments at least twice. Although the most highly terrestrial- and many freshwater-adapted crabs are concentrated in Thoracotremata, Bayesian threshold models of ancestral state reconstruction fail to identify shifts to higher terrestrial grades due to the degree of underlying change required. Lineages throughout our tree inhabit intertidal and marginal marine environments, corroborating the inference that the early stages of terrestrial adaptation have a lower threshold to evolve. Our framework and extensive new fossil and natural history datasets will enable future comparisons of non-marine adaptation at the morphological and molecular level. Crabs provide an important window into the early processes of adaptation to novel environments, and different degrees of evolutionary constraint that might help predict these pathways.

5.
Front Microbiol ; 14: 1257276, 2023.
Article in English | MEDLINE | ID: mdl-37795302

ABSTRACT

The bacterial communities of the human skin impact its physiology and homeostasis, hence elucidating the composition and structure of the healthy skin bacteriome is paramount to understand how bacterial imbalance (i.e., dysbiosis) may lead to disease. To obtain an integrated view of the spatial diversity of the skin bacteriome, we surveyed from 2019 to 2023 five skin regions (belly button, behind ears, between toes, calves and forearms) with different physiological characteristics (dry, moist and sebaceous) in 129 healthy adults (579 samples - after data cleaning). Estimating bacterial diversity through 16S rRNA metataxonomics, we identified significant (p < 0.0001) differences in the bacterial relative abundance of the four most abundant phyla and 11 genera, alpha- and beta-diversity indices and predicted functional profiles (36 to 400 metabolic pathways) across skin regions and microenvironments. No significant differences, however, were observed across genders, ages, and ethnicities. As previously suggested, dry skin regions (forearms and calves) were more even, richer, and functionally distinct than sebaceous (behind ears) and moist (belly button and between toes) regions. Within skin regions, bacterial alpha- and beta-diversity also varied significantly for some of the years compared, suggesting that skin bacterial stability may be region and subject dependent. Our results, hence, confirm that the skin bacteriome varies systematically across skin regions and microenvironments and provides new insights into the internal and external factors driving bacterial diversity.

6.
Mol Biol Evol ; 40(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37552897

ABSTRACT

The clade Pancrustacea, comprising crustaceans and hexapods, is the most diverse group of animals on earth, containing over 80% of animal species and half of animal biomass. It has been the subject of several recent phylogenomic analyses, yet relationships within Pancrustacea show a notable lack of stability. Here, the phylogeny is estimated with expanded taxon sampling, particularly of malacostracans. We show small changes in taxon sampling have large impacts on phylogenetic estimation. By analyzing identical orthologs between two slightly different taxon sets, we show that the differences in the resulting topologies are due primarily to the effects of taxon sampling on the phylogenetic reconstruction method. We compare trees resulting from our phylogenomic analyses with those from the literature to explore the large tree space of pancrustacean phylogenetic hypotheses and find that statistical topology tests reject the previously published trees in favor of the maximum likelihood trees produced here. Our results reject several clades including Caridoida, Eucarida, Multicrustacea, Vericrustacea, and Syncarida. Notably, we find Copepoda nested within Allotriocarida with high support and recover a novel relationship between decapods, euphausiids, and syncarids that we refer to as the Syneucarida. With denser taxon sampling, we find Stomatopoda sister to this latter clade, which we collectively name Stomatocarida, dividing Malacostraca into three clades: Leptostraca, Peracarida, and Stomatocarida. A new Bayesian divergence time estimation is conducted using 13 vetted fossils. We review our results in the context of other pancrustacean phylogenetic hypotheses and highlight 15 key taxa to sample in future studies.


Subject(s)
Arthropods , Copepoda , Animals , Phylogeny , Bayes Theorem , Insecta
7.
Sci Rep ; 13(1): 13957, 2023 08 26.
Article in English | MEDLINE | ID: mdl-37633998

ABSTRACT

Most experiments studying bacterial microbiomes rely on the PCR amplification of all or part of the gene for the 16S rRNA subunit, which serves as a biomarker for identifying and quantifying the various taxa present in a microbiome sample. Several computational methods exist for analyzing 16S amplicon sequencing. However, the most-used bioinformatics tools cannot produce high quality genus-level or species-level taxonomic calls and may underestimate the potential accuracy of these calls. We used 16S sequencing data from mock bacterial communities to evaluate the sensitivity and specificity of several bioinformatics pipelines and genomic reference libraries used for microbiome analyses, concentrating on measuring the accuracy of species-level taxonomic assignments of 16S amplicon reads. We evaluated the tools DADA2, QIIME 2, Mothur, PathoScope 2, and Kraken 2 in conjunction with reference libraries from Greengenes, SILVA, Kraken 2, and RefSeq. Profiling tools were compared using publicly available mock community data from several sources, comprising 136 samples with varied species richness and evenness, several different amplified regions within the 16S rRNA gene, and both DNA spike-ins and cDNA from collections of plated cells. PathoScope 2 and Kraken 2, both tools designed for whole-genome metagenomics, outperformed DADA2, QIIME 2 using the DADA2 plugin, and Mothur, which are theoretically specialized for 16S analyses. Evaluations of reference libraries identified the SILVA and RefSeq/Kraken 2 Standard libraries as superior in accuracy compared to Greengenes. These findings support PathoScope and Kraken 2 as fully capable, competitive options for genus- and species-level 16S amplicon sequencing data analysis, whole genome sequencing, and metagenomics data tools.


Subject(s)
Cercozoa , Microbiota , Polyarteritis Nodosa , Humans , Metagenomics , RNA, Ribosomal, 16S/genetics , Metagenome , Bone Plates
8.
Front Aging Neurosci ; 15: 1186470, 2023.
Article in English | MEDLINE | ID: mdl-37484691

ABSTRACT

Introduction: Human endogenous retroviruses (HERVs) are transcriptionally-active remnants of ancient retroviral infections that may play a role in Alzheimer's disease. Methods: We combined two, publicly available RNA-Seq datasets with a third, novel dataset for a total cohort of 103 patients with Alzheimer's disease and 45 healthy controls. We use telescope to perform HERV quantification for these samples and simultaneously perform gene expression analysis. Results: We identify differentially expressed genes and differentially expressed HERVs in Alzheimer's disease patients. Differentially expressed HERVs are scattered throughout the genome; many of them are members of the HERV-K superfamily. A number of HERVs are correlated with the expression of dysregulated genes in Alzheimer's and are physically proximal to genes which drive disease pathways. Discussion: Dysregulated expression of ancient retroviral insertions in the human genome are present in Alzheimer's disease and show localization patterns that may explain how these elements drive pathogenic gene expression.

9.
Dev Comp Immunol ; 146: 104701, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37196852

ABSTRACT

Macrophage-lineage cells are indispensable to immunity and physiology of all vertebrates. Amongst these, amphibians represent a key stage in vertebrate evolution and are facing decimating population declines and extinctions, in large part due to emerging infectious agents. While recent studies indicate that macrophages and related innate immune cells are critically involved during these infections, much remains unknown regarding the ontogeny and functional differentiation of these cell types in amphibians. Accordingly, in this review we coalesce what has been established to date about amphibian blood cell development (hematopoiesis), the development of key amphibian innate immune cells (myelopoiesis) and the differentiation of amphibian macrophage subsets (monopoiesis). We explore the current understanding of designated sites of larval and adult hematopoiesis across distinct amphibian species and consider what mechanisms may lend to these species-specific adaptations. We discern the identified molecular mechanisms governing the functional differentiation of disparate amphibian (chiefly Xenopus laevis) macrophage subsets and describe what is known about the roles of these subsets during amphibian infections with intracellular pathogens. Macrophage lineage cells are at the heart of so many vertebrate physiological processes. Thus, garnering greater understanding of the mechanisms responsible for the ontogeny and functionality of these cells in amphibians will lend to a more comprehensive view of vertebrate evolution.


Subject(s)
Amphibians , Myelopoiesis , Animals , Macrophages , Cell Differentiation , Hematopoiesis , Xenopus laevis
10.
Cancer Res ; 83(15): 2584-2599, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37249603

ABSTRACT

Transposable elements (TE) are typically silenced by DNA methylation and repressive histone modifications in differentiated healthy human tissues. However, TE expression increases in a wide range of cancers and is correlated with global hypomethylation of cancer genomes. We assessed expression and DNA methylation of TEs in fibroblast cells that were serially transduced with hTERT, SV40, and HRASR24C to immortalize and then transform them, modeling the different steps of the tumorigenesis process. RNA sequencing and whole-genome bisulfite sequencing were performed at each stage of transformation. TE expression significantly increased as cells progressed through transformation, with the largest increase in expression after the final stage of transformation, consistent with data from human tumors. The upregulated TEs were dominated by endogenous retroviruses [long terminal repeats (LTR)]. Most differentially methylated regions (DMR) in all stages were hypomethylated, with the greatest hypomethylation in the final stage of transformation. A majority of the DMRs overlapped TEs from the RepeatMasker database, indicating that TEs are preferentially demethylated. Many hypomethylated TEs displayed a concordant increase in expression. Demethylation began during immortalization and continued into transformation, while upregulation of TE transcription occurred in transformation. Numerous LTR elements upregulated in the model were also identified in The Cancer Genome Atlas datasets of breast, colon, and prostate cancer. Overall, these findings indicate that TEs, specifically endogenous retroviruses, are demethylated and transcribed during transformation. SIGNIFICANCE: Analysis of epigenetic and transcriptional changes in a transformation model reveals that transposable element expression and methylation are dysregulated during oncogenic transformation.


Subject(s)
DNA Methylation , Neoplasms , Humans , DNA Transposable Elements/genetics , Transcriptional Activation , Sequence Analysis, RNA , Neoplasms/genetics
11.
Sci Rep ; 13(1): 5141, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36991079

ABSTRACT

Regulation of intron retention (IR), a form of alternative splicing, is a newly recognized checkpoint in gene expression. Since there are numerous abnormalities in gene expression in the prototypic autoimmune disease systemic lupus erythematosus (SLE), we sought to determine whether IR was intact in patients with this disease. We, therefore, studied global gene expression and IR patterns of lymphocytes in SLE patients. We analyzed RNA-seq data from peripheral blood T cell samples from 14 patients suffering from systemic lupus erythematosus (SLE) and 4 healthy controls and a second, independent data set of RNA-seq data from B cells from16 SLE patients and 4 healthy controls. We identified intron retention levels from 26,372 well annotated genes as well as differential gene expression and tested for differences between cases and controls using unbiased hierarchical clustering and principal component analysis. We followed with gene-disease enrichment analysis and gene-ontology enrichment analysis. Finally, we then tested for significant differences in intron retention between cases and controls both globally and with respect to specific genes. Overall decreased IR was found in T cells from one cohort and B cells from another cohort of patients with SLE and was associated with increased expression of numerous genes, including those encoding spliceosome components. Different introns within the same gene displayed both up- and down-regulated retention profiles indicating a complex regulatory mechanism. These results indicate that decreased IR in immune cells is characteristic of patients with active SLE and may contribute to the abnormal expression of specific genes in this autoimmune disease.


Subject(s)
Lupus Erythematosus, Systemic , T-Lymphocytes , Humans , Introns/genetics , T-Lymphocytes/metabolism , B-Lymphocytes
12.
Sci Rep ; 13(1): 1217, 2023 01 21.
Article in English | MEDLINE | ID: mdl-36681756

ABSTRACT

Persons with cystic fibrosis (PwCF) suffer from pulmonary exacerbations (PEx) related in part to lung infection. While higher microbial diversity is associated with higher lung function, the data on the impact of short-term antibiotics on changes in microbial diversity is conflicting. Further, Prevotella secretes beta-lactamases, which may influence recovery of lung function. We hypothesize that sub-therapeutic and broad spectrum antibiotic exposure leads to decreasing microbial diversity. Our secondary aim was to evaluate the concerted association of beta-lactam pharmacokinetics (PK), antibiotic spectrum, microbial diversity, and antibiotic resistance on lung function recovery using a pathway analysis. This was a retrospective observational study of persons with CF treated with IV antibiotics for PEx between 2016 and 2020 at Children's National Hospital; respiratory samples and clinical information were collected at hospital admission for PEx (E), end of antibiotic treatment (T), and follow-up (F). Metagenomic sequencing was performed; PathoScope 2.0 and AmrPlusPlus were used for taxonomic assignment of sequences to bacteria and antibiotic resistance genes (ARGs). M/W Pharm was used for PK modeling. Comparison of categorical and continuous variables and pathway analysis were performed in STATA. Twenty-two PwCF experienced 43 PEx. The study cohort had a mean age of 14.6 years. Only 12/43 beta-lactam courses had therapeutic PK, and 18/43 were broad spectrum. A larger decrease in richness between E and T was seen in the therapeutic PK group (sufficient - 20.1 vs. insufficient - 1.59, p = 0.025) and those receiving broad spectrum antibiotics (broad - 14.5 vs. narrow - 2.8, p = 0.030). We did not detect differences in the increase in percent predicted forced expiratory volume in one second (ppFEV1) at end of treatment compared to PEx based on beta-lactam PK (sufficient 13.6% vs. insufficient 15.1%) or antibiotic spectrum (broad 11.5% vs. narrow 16.6%). While both therapeutic beta-lactam PK and broad-spectrum antibiotics decreased richness between PEx and the end of treatment, we did not detect longstanding changes in alpha diversity or an association with superior recovery of lung function compared with subtherapeutic PK and narrow spectrum antimicrobials.


Subject(s)
Anti-Infective Agents , Cystic Fibrosis , Child , Humans , Adolescent , Cystic Fibrosis/complications , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactams/therapeutic use , Lung , Anti-Infective Agents/therapeutic use
13.
Nutrients ; 14(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36558359

ABSTRACT

Fecal microbiota transplantation (FMT) is a promising therapeutic modality for the treatment and prevention of metabolic disease. We previously conducted a double-blind, randomized, placebo-controlled pilot trial of FMT in obese metabolically healthy patients in which we found that FMT enhanced gut bacterial bile acid metabolism and delayed the development of impaired glucose tolerance relative to the placebo control group. Therefore, we conducted a secondary analysis of fecal samples collected from these patients to assess the potential gut microbial species contributing to the effect of FMT to improve metabolic health and increase gut bacterial bile acid metabolism. Fecal samples collected at baseline and after 4 weeks of FMT or placebo treatment underwent shotgun metagenomic analysis. Ultra-high-performance liquid chromatography-mass spectrometry was used to profile fecal bile acids. FMT-enriched bacteria that have been implicated in gut bile acid metabolism included Desulfovibrio fairfieldensis and Clostridium hylemonae. To identify candidate bacteria involved in gut microbial bile acid metabolism, we assessed correlations between bacterial species abundance and bile acid profile, with a focus on bile acid products of gut bacterial metabolism. Bacteroides ovatus and Phocaeicola dorei were positively correlated with unconjugated bile acids. Bifidobacterium adolescentis, Collinsella aerofaciens, and Faecalibacterium prausnitzii were positively correlated with secondary bile acids. Together, these data identify several candidate bacteria that may contribute to the metabolic benefits of FMT and gut bacterial bile acid metabolism that requires further functional validation.


Subject(s)
Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Humans , Fecal Microbiota Transplantation/methods , Feces/microbiology , Bacteria/genetics , Bile Acids and Salts/analysis
14.
Open Forum Infect Dis ; 9(9): ofac466, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36168550

ABSTRACT

Background: Cystic fibrosis (CF) is characterized by recurrent pulmonary exacerbations (PEx) and lung function decline. PEx are frequently treated with antibiotics. However, little is known about the effects of antibiotics on the airway microbiome of persons with CF over time. The purpose of this study was to evaluate changes in the microbiome and lung function in persons with CF over 1 year following an initial study pulmonary exacerbation (iPEx). Methods: Twenty children aged ≤18 years with CF were enrolled in the study, which occurred prior to the routine administration of highly effective modulator therapy. Respiratory samples and spirometry were obtained at a minimum of quarterly visits and up to 1 year after an iPEx. Metagenomic sequencing was performed, and bacterial taxa were assigned using MetaPhlAn 2.0. Paired t test, analysis of variance, and generalized least squares regression were used to compare outcome variables. Results: The mean age of study participants at the time of the iPEx was 10.6 years. There were 3 ± 1.6 PEx treated with antibiotics per person during the study period. Bacterial richness was similar at 1 year compared to iPEx (40.3 vs 39.3, P = .852), whereas the mean Shannon diversity index was significantly higher at 1 year (2.84 vs 1.62, P < .001). The number of PEx treated with antibiotics was not associated with changes in microbial diversity but was associated with changes in lung function. Conclusions: In our 1-year prospective study, we found that microbial diversity increased despite decreases in lung function associated with repeated PEx events requiring antibiotic therapy.

15.
Front Microbiol ; 13: 916210, 2022.
Article in English | MEDLINE | ID: mdl-36160194

ABSTRACT

Rhizosphere microbial communities exert critical roles in plant health, nutrient cycling, and soil fertility. Despite the essential functions conferred by microbes, the source and acquisition of the rhizosphere are not entirely clear. Therefore, we investigated microbial community diversity and potential source using the only two native Antarctic plants, Deschampsia antarctica (Da) and Colobanthus quitensis (Cq), as models. We interrogated rhizosphere and bulk soil microbiomes at six locations in the Byers Peninsula, Livingston Island, Antarctica, both individual plant species and their association (Da.Cq). Our results show that host plant species influenced the richness and diversity of bacterial communities in the rhizosphere. Here, the Da rhizosphere showed the lowest richness and diversity of bacteria compared to Cq and Da.Cq rhizospheres. In contrast, for rhizosphere fungal communities, plant species only influenced diversity, whereas the rhizosphere of Da exhibited higher fungal diversity than the Cq rhizosphere. Also, we found that environmental geographic pressures (i.e., sampling site, latitude, and altitude) and, to a lesser extent, biotic factors (i.e., plant species) determined the species turnover between microbial communities. Moreover, our analysis shows that the sources of the bacterial communities in the rhizosphere were local soils that contributed to homogenizing the community composition of the different plant species growing in the same sampling site. In contrast, the sources of rhizosphere fungi were local (for Da and Da.Cq) and distant soils (for Cq). Here, the host plant species have a specific effect in acquiring fungal communities to the rhizosphere. However, the contribution of unknown sources to the fungal rhizosphere (especially in Da and Da.Cq) indicates the existence of relevant stochastic processes in acquiring these microbes. Our study shows that rhizosphere microbial communities differ in their composition and diversity. These differences are explained mainly by the microbial composition of the soils that harbor them, acting together with plant species-specific effects. Both plant species acquire bacteria from local soils to form part of their rhizosphere. Seemingly, the acquisition process is more complex for fungi. We identified a significant contribution from unknown fungal sources due to stochastic processes and known sources from soils across the Byers Peninsula.

16.
FEMS Microbiol Ecol ; 98(9)2022 08 23.
Article in English | MEDLINE | ID: mdl-35927583

ABSTRACT

Host evolutionary history is a key factor shaping the earthworm cast microbiome, although its effect can be shadowed by the earthworm's diet. To untangle dietary from taxon effects, we raised nine earthworm species on a uniform diet of cow manure and compared cast microbiome across species while controlling for diet. Our results showed that, under controlled laboratory conditions, earthworm microbiomes are species-specific, more diverse than that of the controlled diet, and mainly comprised of native bacteria (i.e. not acquired from the diet). Furthermore, diet has a medium to large convergence effect on microbiome composition since earthworms shared 16%-74% of their bacterial amplicon sequence variants (ASV). The interspecies core microbiome included 10 ASVs, while their intraspecies core microbiomes were larger and varied in ASV richness (24%-48%) and sequence abundance across earthworm species. This specificity in core microbiomes and variable degree of similarity in bacterial composition suggest that phylosymbiosis could determine earthworm microbiome assembly. However, lack of congruence between the earthworm phylogeny and the microbiome dendrogram suggests that a consistent diet fed over several generations may have weakened potential phylosymbiotic effects. Thus, cast microbiome assembly in earthworms seem to be the result of an interplay among host phylogeny and diet.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Oligochaeta , Animals , Bacteria/genetics , Microbiota/genetics , Oligochaeta/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics
17.
Anim Microbiome ; 4(1): 43, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35794639

ABSTRACT

BACKGROUND: Mastitis pathogenesis involves a wide range of opportunistic and apparently resident microorganims including bacteria, viruses and archaea. In dairy animals, microbes reside in the host, interact with environment and evade the host immune system, providing a potential for host-tropism to favor mastitis pathogenesis. To understand the host-tropism phenomena of bovine-tropic mastitis microbiomes, we developed a cow-to-mouse mastitis model. METHODS: A cow-to-mouse mastitis model was established by fecal microbiota transplantation (FMT) and milk microbiota transplantation (MMT) to pregnant mice to assess microbiome dysbiosis and genomic functional perturbations through shotgun whole metagenome sequencing (WMS) along with histopathological changes in mice mammary gland and colon tissues. RESULTS: The cow-to-mouse FMT and MMT from clinical mastitis (CM) cows induced mastitis syndromes in mice as evidenced by histopathological changes in mammary gland and colon tissues. The WMS of 24 samples including six milk (CM = 3, healthy; H = 3), six fecal (CM = 4, H = 2) samples from cows, and six fecal (CM = 4, H = 2) and six mammary tissue (CM = 3, H = 3) samples from mice generating 517.14 million reads (average: 21.55 million reads/sample) mapped to 2191 bacterial, 94 viral and 54 archaeal genomes. The Kruskal-Wallis test revealed significant differences (p = 0.009) in diversity, composition, and relative abundances in microbiomes between CM- and H-metagenomes. These differences in microbiome composition were mostly represented by Pseudomonas aeruginosa, Lactobacillus crispatus, Klebsiella oxytoca, Enterococcus faecalis, Pantoea dispersa in CM-cows (feces and milk), and Muribaculum spp., Duncaniella spp., Muribaculum intestinale, Bifidobacterium animalis, Escherichia coli, Staphylococcus aureus, Massilia oculi, Ralstonia pickettii in CM-mice (feces and mammary tissues). Different species of Clostridia, Bacteroida, Actinobacteria, Flavobacteriia and Betaproteobacteria had a strong co-occurrence and positive correlation as the indicator species of murine mastitis. However, both CM cows and mice shared few mastitis-associated microbial taxa (1.14%) and functional pathways regardless of conservation of mastitis syndromes, indicating the higher discrepancy in mastitis-associated microbiomes among lactating mammals. CONCLUSIONS: We successfully induced mastitis by FMT and MMT that resulted in microbiome dysbiosis and genomic functional perturbations in mice. This study induced mastitis in a mouse model through FMT and MMT, which might be useful for further studies- focused on pathogen(s) involved in mastitis, their cross-talk among themselves and the host.

18.
Sci Rep ; 12(1): 12204, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35842456

ABSTRACT

Proteins are direct products of the genome and metabolites are functional products of interactions between the host and other factors such as environment, disease state, clinical information, etc. Omics data, including proteins and metabolites, are useful in characterizing biological processes underlying COVID-19 along with patient data and clinical information, yet few methods are available to effectively analyze such diverse and unstructured data. Using an integrated approach that combines proteomics and metabolomics data, we investigated the changes in metabolites and proteins in relation to patient characteristics (e.g., age, gender, and health outcome) and clinical information (e.g., metabolic panel and complete blood count test results). We found significant enrichment of biological indicators of lung, liver, and gastrointestinal dysfunction associated with disease severity using publicly available metabolite and protein profiles. Our analyses specifically identified enriched proteins that play a critical role in responses to injury or infection within these anatomical sites, but may contribute to excessive systemic inflammation within the context of COVID-19. Furthermore, we have used this information in conjunction with machine learning algorithms to predict the health status of patients presenting symptoms of COVID-19. This work provides a roadmap for understanding the biochemical pathways and molecular mechanisms that drive disease severity, progression, and treatment of COVID-19.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Lung , Metabolomics/methods , Proteomics/methods , Severity of Illness Index
19.
J Virol ; 96(15): e0037222, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35867565

ABSTRACT

Elimination of human immunodeficiency virus (HIV) reservoirs is a critical endpoint to eradicate HIV. One therapeutic intervention against latent HIV is "shock and kill." This strategy is based on the transcriptional activation of latent HIV with a latency-reversing agent (LRA) with the consequent killing of the reactivated cell by either the cytopathic effect of HIV or the immune system. We have previously found that the small molecule 3-hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) acts as an LRA by increasing signal transducer and activator of transcription (STAT) factor activation mediated by interleukin-15 (IL-15) in cells isolated from aviremic participants. The IL-15 superagonist N-803 is currently under clinical investigation to eliminate latent reservoirs. IL-15 and N-803 share similar mechanisms of action by promoting the activation of STATs and have shown some promise in preclinical models directed toward HIV eradication. In this work, we evaluated the ability of HODHBt to enhance IL-15 signaling in natural killer (NK) cells and the biological consequences associated with increased STAT activation in NK cell effector and memory-like functions. We showed that HODHBt increased IL-15-mediated STAT phosphorylation in NK cells, resulting in increases in the secretion of CXCL-10 and interferon gamma (IFN-γ) and the expression of cytotoxic proteins, including granzyme B, granzyme A, perforin, granulysin, FASL, and TRAIL. This increased cytotoxic profile results in increased cytotoxicity against HIV-infected cells and different tumor cell lines. HODHBt also improved the generation of cytokine-induced memory-like NK cells. Overall, our data demonstrate that enhancing the magnitude of IL-15 signaling with HODHBt favors NK cell cytotoxicity and memory-like generation, and thus, targeting this pathway could be further explored for HIV cure interventions. IMPORTANCE Several clinical trials targeting the HIV latent reservoir with LRAs have been completed. In spite of a lack of clinical benefit, they have been crucial to elucidate hurdles that "shock and kill" strategies have to overcome to promote an effective reduction of the latent reservoir to lead to a cure. These hurdles include low reactivation potential mediated by LRAs, the negative influence of some LRAs on the activity of natural killer and effector CD8 T cells, an increased resistance to apoptosis of latently infected cells, and an exhausted immune system due to chronic inflammation. To that end, finding therapeutic strategies that can overcome some of these challenges could improve the outcome of shock and kill strategies aimed at HIV eradication. Here, we show that the LRA HODHBt also improves IL-15-mediated NK cell effector and memory-like functions. As such, pharmacological enhancement of IL-15-mediated STAT activation can open new therapeutic avenues toward an HIV cure.


Subject(s)
HIV-1 , Immunologic Memory , Interleukin-15 , Killer Cells, Natural , STAT Transcription Factors , Triazines , Virus Latency , Humans , Cell Line, Tumor , Chemokine CXCL10 , Cytotoxicity Tests, Immunologic , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/growth & development , HIV-1/immunology , Immunologic Memory/drug effects , Interferon-gamma , Interleukin-15/immunology , Interleukin-15/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , STAT Transcription Factors/metabolism , Transcriptional Activation/drug effects , Triazines/pharmacology , Virus Activation/drug effects , Virus Latency/drug effects
20.
Front Microbiol ; 13: 863123, 2022.
Article in English | MEDLINE | ID: mdl-35685934

ABSTRACT

CRF47_BF is a circulating recombinant form (CRF) of the human immunodeficiency virus type 1 (HIV-1), the etiological agent of AIDS. CRF47_BF represents one of 19 CRFx_BFs and has a geographic focus in Spain, where it was first identified in 2010. Since its discovery, CRF47_BF has expanded considerably in Spain, predominantly through heterosexual contact (∼56% of the infections). Little is known, however, about the origin and diversity of this CRF or its epidemiological correlates, as very few samples have been available so far. This study conducts a phylogenetic analysis with representatives of all CRFx_BF sequence types along with HIV-1 M Group subtypes to validate that the CRF47_BF sequences share a unique evolutionary history. The CRFx_BF sequences cluster into a single, not well supported, clade that includes their dominant parent subtypes (B and F). This clade also includes subtype D and excludes sub-subtype F2. However, the CRF47_BF sequences all share a most recent common ancestor. Further analysis of this clade couples CRF47_BF protease-reverse transcriptase sequences and epidemiological data from an additional 87 samples collected throughout Spain, as well as additional CRF47_BF database sequences from Brazil and Spain to investigate the origin and phylodynamics of CRF47_BF. The Spanish region with the highest proportion of CRF47_BF samples in the data set was the Basque Country (43.7%) with Navarre next highest at 19.5%. We include in our analysis epidemiological data on host sex, mode of transmission, time of collection, and geographic region. The phylodynamic analysis indicates that CRF47_BF originated in Brazil around 1999-2000 and spread to Spain from Brazil in 2002-2003. The virus spread rapidly throughout Spain with an increase in population size from 2011 to 2015 and leveling off more recently. Three strongly supported clusters associated with Spanish regions (Basque Country, Navarre, and Aragon), together comprising 60.8% of the Spanish samples, were identified, one of which was also associated with transmission among men who have sex with men. The expansion in Spain of CRF47_BF, together with that of other CRFs and subtype variants of South American origin, previously reported, reflects the increasing relationship between the South American and European HIV-1 epidemics.

SELECTION OF CITATIONS
SEARCH DETAIL
...